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PREFACE

This report was prepared by Dr. William D. Hibler 111, Research Physicist, Snow
and Ice Branch, Research Division, U.S. Army Cold Regions Research and Engi-
neering Laboratory. The work was supported by the Office of Naval Research and
by the National Aeronautics and Space Administration. This report unifies material
presented by the author in journal articles and conference papers on aspects of mod-
eling ice dynamics and thermodynamic characteristics of a variable thickness sea ice
cover. This report gives particular attention to parameterizing the ice ridging pro-
cess.

The author thanks Dr. W. Weeks of CRREL for valuable comments on the manu-
script. In the modeling work reported, discussions with Dr. K. Bryan at the Geo-
physical Fluid Dynamics Laboratory, Princeton, New Jersey, were most helpful.
Computer support for the seasonal simulations was provided by the Geophysical
Fluid Dynamics Laboratory. Technical review was given by Dr. W. Weeks and W.
Tucker II of CRREL.

The contents of this report are not to be used for advertising or promotional pur-
poses. Citation of brand names does not constitute an official endorsement or ap-
proval of the use of such commercial products.
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SUMMARY

The main objective of this research is the development and verification of numeri-
cal models for simulating the dynamic and thermodynamic characteristics of the
Arctic ice cover. Emphasis has been placed on realistically parameterizing the ridg-
ing process within the framework of a variable thickness sea ice model.

The basic model consists of a multiple-level ice thickness distribution coupled to a
complete momentum balance employing a viscous plastic constitutive law. A flow
chart describing the overall model is given in Figure 1. Note that a full heat budget
code, a fixed depth oceanic mixed layer, and a sea ice thermodynamic model are used
in conjunction with the ice thickness evolution equations. Details of the equations
are presented in the main text. In the numerical code, the ridge redistribution pro-
cess is formulated in a general manner so that a variety of different ridging mecha-
nisms may be modeled. The numerical scheme is formulated in a fixed Eulerian grid
so that integrations over unlimited time intervals may be performed. In addition, in
the mixed layer formulation, lateral melting terms are included. In the computer
code, special attention has been given to conservation properties. Specifically, the
code is formulated to manifestly conserve air-sea heat exchanges so that all energy
exchanges are precisely accounted for in terms of ice formation, ice melt or warming
of the oceanic mixed layer. Because of these conservation properties, the code is
suitable for coupling to atmospheric and oceanic general circulation models.

Because of the importance of ridging in this model, considerable effort has gone
into designing a realistic ridge distribution process. To this end a redistribution pro-
cess consistent with observed and hypothesized physics of the ridging process is pro-
posed. This redistributor is analytically examined and compared to a previous pro-
posed redistributor (Fig. 3 and 4). The two key physical features incorporated in this
redistributor are 1) under deformation, ridging transfers ice to a variety of thickness
categories, 2) typical ridge heights increase more slowly than does the thickness of
ice being ridged. Analytic calculations show that taking into account the second fea-
ture tends to preferentially increase thin ice strengths as compared to previously pro-
posed redistributors (Fig. 4).

The main approach to analyzing the fully coupled model characteristics has been
to carry out an equilibrium variable thickness simulation of the Arctic Basin ice cov-
er. In this simulation, a plastic rheology coupled to a 10-level ice thickness distribu-
tion was found to yield realistic geographical variations in ice thickness, with ice in
excess of 7 m thick along the Canadian Archipelago and about 2 m along the Alas-
kan North Slope (Fig. 7). Examination of this buildup shows that it takes several
years to fully evolve and is largely due to ridging.

The volume of ridged ice formed each year also shows interesting spatial varia- ;
tions (Fig. 11). The general shapes of the roughness contours in this figure agree well T
with surface roughness observations. The major feature is a heavy buildup of ridg-
ing off the Canadian Archipelago together with less ridging near the pole. In addi-
tion, there is a zone of heavy ridging just off the North Slope that is in agreement
with observations there. A final feature is a tongue of high ridging further offshore N
near the tip of Greenland. Roughness data obtained from submarine profiles also
show such a tongue.
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Several sensitivity experiments were performed to determine the major factors
dictating the ice edge location (Fig. 7, 13, and 14). The results indicate that it is a
combination of summer melt coupled with large amounts of offshore advection ear-
ly in the spring. The most critical factor, however, appears to be summer melt. An
increase in the albedo of melting ice by only 10%, for example, substantially im-
proved the results from North Slope ice edge (Fig. 13).

The results also give some insight into strengths needed for proper simulations.
Basically, by use of the ridging parameterization mentioned above, a realistic ice
buildup was simulated. However, the simulated ice velocities were rather large
(Table 1). Sensitivity analyses suggest that a modest increase in frictional losses
would be adequate for obtaining more realistic ice velocities and strengths. Further,
more detailed studies with polar drifting buoys are needed to more precisely deter-
mine these strengths.

With regard to future research, substantial progress has been made on the devel-
opment and numerical examination of a complete variable thickness sea ice model.
However, considerable theoretical and numerical work remains to determine more
precisely the strengths and weaknesses of this model as it stands. The ice dynamics
formulation, particularly, needs further study.
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NUMERICAL MODELING OF SEA ICE
DYNAMICS AND ICE THICKNESS
CHARACTERISTICS

A Final Report

William D. Hibler III

INTRODUCTION

In the polar regions the interaction between the atmosphere and the ocean is significantly
modified by the presence of a sea ice cover. Typically, this ice cover contains a variety of ice
thicknesses that evolve in response to both dynamic and thermodynamic forcing. This vari-
able thickness feature can substantially change the way the ice cover modifies the air-sea in-
teraction and, hence, affect the atmospheric and oceanic circulation. Numerical and empiri-
cal studies demonstrating the relevance of this interaction to the atmosphere have recently
been carried out by Herman and Johnson (1978), Walsh and Johnson (1979a), Saltzman and
Moritz (1980), Lemke et al. (1980) and Manabe and Stouffer (1980). In light of these results,
properly simulating a variable thickness sea ice cover has become particularly relevant to nu-
merical investigations of climate.

Recent research on modeling a variable thickness ice cover is largely based on pioneering
work by Coon (1974), Thorndike et al. (1975) and Rothrock (1975). Specifically, Thorndike
et al. (1975) introduced an areal ice thickness distribution function and developed equations
for the dynamic-thermodynamic evolution of this distribution. The input fields for the
evolution equations consist of a two-dimensional ice velocity field and ice growth rates ver-
sus thickness and time. In this model the effects of ice dynamics on the ice thickness distribu-
tion are quantified by allowing thin ice formation and redistribution of ice to thicker catego-
ries (because of ridging) in response to deformation. Similarly, thermodynamic effects cause
a rearrangement of the relative amounts of ice in different categories. Rothrock’s (1975) con-
tribution was to provide a means for coupling the ice thickness distribution to the rheological
behavior of sea ice. This rheological behavior, in turn, affects the ice dynamics. For this pur-
pose Rothrock (1975) noted that the rate of work done on the ice through ridging is related to
the work done by the ice interaction forces. By combining this idea with the concept of a
plastic constitutive law for sea ice developed by Coon (1974), it is possible to form a coupled
set of equations describing the dynamic-thermodynamic behavior of sea ice.




Numerical investigations of the variable thickness concept have mainly concentrated on
examining the ice thickness distribution independent of its coupling effects on ice dynamics.
Thorndike et al. (1975), for example, used the deformation field for a lagrangian parcel of
ice (defined by three contemporaneous drifting stations in the Arctic Basin) together with
growth rate estimates versus thickness and time to drive a thickness distribution model. Sim-
ulations with these data reproduced an ice thickness distribution in qualitative agreement
with observations. Quantitative discrepancies in the results did, however, occur in the thick
end of the thickness distribution. Subsequently, Maykut (1978) used observed and simulated
thin ice percentages to estimate the regionally averaged heat input to the atmosphere. His es-
timates suggest that in the central Arctic in winter, heat exchange through ice in the 0-1.0 m
thickness range is approximately equal to heat exchange through thicker ice. This is so even
though the thicker ice constitutes a much larger areal fraction of the ice cover.

The simulations by Thorndike et al. (1975) and Maykut (1978) established the validity and
importance of the ice thickness distribution concept. However, they werc limited in the sense
that changes in the ice thickness distribution were not allowed to modify the ice dynamics. In
addition, a lagrangian element that covered only a small portion of the basin was used. Be-
cause of this localized lagrangian formulation, relative geographical variations were not ex-
amined and advection effects were not explicitly modeled. A useful way to examine the be-
havior of a variable thickness dynamic-thermodynamic sea ice model that is more fully coup-
led is to carry out a seasonal equilibrium simulation. Specifically, by integrating such a mod-
el over sufficiently large time intervals (several years), results for both drift and thickness can
be obtained that are relatively independent of initial conditions. While a number of short-
term integrations of such models have been done for localized regions (Coon et al. 1976,
Pritchard et al. 1977), no equilibrium simulations have been performed. An impediment to
conducting such a fully coupled dynamic-thermodynamic equilibrium simulation is the com-
putational difficuity in solving the equations. In particular, carrying out coupled numerical
simulations over times long enough to examine the thermodynamic evolution of the ice cover
requires explicit inclusion of nonlinear advection terms. Such terms are not included in either
the Thorndike et al. (1975) simulations or the Coon et al. (1976) and Pritchard et al. (1977)
studies.

This report describes a numerical framework suitable for simulating a variable thickness
sea ice cover over a seasonal cycle and presents a new redistributor for modeling ridge build-
up on the geophysical scale. In addition to seasonal simulations, this model also can be ap-
plied to shorter-term forecasts. While it has certain features in common with the model de-
veloped by Hibler (1979) in an earlier study of the Arctic ice cover, the present framework
contains a more general treatment of the ice strength, the ice thickness distribution, and the
ice growth and decay. By combining this framework with a thermodynamic sea ice model
similar to that of Semtner (1976), a seasonal equilibrium simulation of the Arctic Basin ice
cover is performed. A flow chart describing the overall model is given in Figure 1.

Several shorter sensitivity studies are also carried out. In analyzing the results of these sim-
ulations, particular attention is paid to the evolution and sensitivity characteristics of the
summer ice edge, and the ice thickness buildup through ridging off the Canadian Archi-
pelago. These characteristics have not been examined in previous variable thickness studies.
To a large degree this study was motivated by the lack of a variable thickness equilibrium
simulation of the Arctic Basin ice cover. The main purpose of this report is to present a com-
plete variable thickness sea ice model and to investigate the degree to which such a model
with full dynamic-thermodynamic coupling can reproduce the observed thickness, drift and
ridging characteristics of the Arctic Basin.
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Figure 1. Flow chart for variable thickness dynamic-thermodynamic
sea ice model. C—Coriolis force; 7.—water stress due to ice motion;
1a—air stress; F—internal stress variation; G—ocean currents; T—ocean tilt;
u—ice velocity; Du/Dt—ice acceleration and momentum advection; m—ice
mass per unit area; g—ice thickness distribution; f(h)—ice growth rate;
h—ice thickness; y(g,h)—ice thickness redistribution.

DESCRIPTION OF THE MODEL

A fully coupled dynamic-thermodynamic sea ice model can be divided into the following
components: a momentum balance describing ice drift, which includes air and water stresses,
Coriolis force, internal ice stress, inertial forces and ocean tilt; an ice rheology, which relates
the ice stress to the ice deformation and strength: ice thickness distribution equations, which
describe the evolution of the ice thickness characteristics caused by thermodynamic and dy-
namic effects; and an ice strength, determined as a function of the ice thickness distribution.
An additional component needed for long-term integration of the model is a thermodynamic
code, which specifies the growth and decay rates of various ice thicknesses in the environ-
ment of a sea ice cover of variable thickness. The first two components are discussed by
Hibler (1979) in a paper describing a dynamic-thermodynamic sea ice model with two thick-
ness levels. In this model the dynamical equations include air and water stresses, Coriolis
force, internal ice stress, inertial forces, momentum advection terms and ocean tilt. Non-
linear boundary layers for both the ocean-ice and air-ice surface traction are used. For the
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Figure 7 (cont’d).

reaches its maximum and minimum extremes in thickness and extent. For comparison the
August plots show observed ice edge estimates obtained from the British Meteorological Of-
fice at Bracknell. This ice edge is the mean 40% ice concentration at the end of August over
the time period 1966-1976.*

The dominant contrast between the two cases is a pronounced difference between the geo-
graphical variations of the ice thicknesses. The results considering only thermodynamic ef-

* Personal communication with G. Rowland, British Meteorological Office, Bracknell, England, March 1980.
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A 125-km resolution grid was used for the simulations and is shown in Figure § (this grid is
identical to that used by Hibler [1979]). Some of the numbered grid cells are referred to later
in the text. The shaded grid cells near Greenland are taken to be *‘outflow”’ grid cells. Ice is
only allowed to be transferred into these grid cells by advection, and once there is considered
to have ‘‘flowed out’’ of the basin. More details on the treatment of ice dynamics and advec-
tion at such cells are given in Hibler (1979).

For the variable thickness simulations, the key results of the heat budget calculation are
the ice growth rates versus thickness. Figure 6 shows the seasonal growth rates (plotted every
16 days) for different thicknesses at grid cell 8. Also plotted is the wind speed at the grid cell.
The main feature is a pronounced seasonal cycle in growth rates that becomes more accentu-
ated for thinner ice types. Superimposed on the seasonal cycle are fluctuations in growth
rates attributable to variations in the sensible and latent heat losses which depend heavily on
the wind speed. This heavy dependence of the thin ice and open water growth on wind speed
has been experimentally observed by Andreas (1980) and is a dominant feature of Maykut’s
(1978) numerical heat exchange results for thin ice. Note that under summer conditions the
melting rate of ice is not dependent on the thickness because of use of a fixed albedo for
melting ice. However, while the total melting rate is the same, the thinner ice will have a
greater ratio of bottom melt to top melt owing to the more efficient conduction of heat into
the mixed layer (see Appendix B).

Basin-wide ice thickness and velocity characteristics

After 5 years both simulations approach a seasonal equilibrium, with the ice thickness and
(in the standard case) ice velocity characteristics changing little between corresponding days
of sequential years. The basin-wide thickness characteristics for the fifth year of integration
are shown in Figure 7 for April and August. During these months the pack ice approximately

Standord
April

120°

U.S.S.R

Aloska
150" 30°
//ifz’”f/,”,///’/’/" T
Canada //// W////’ 574 .
oS 0

90°

Figure 7. Average April and August thickness contours (m)
Jor the fifth year of the standard and ‘‘thermodynamics-
only’’ simulations. The dashed line represents the average 40%
ice concentration contour at the end of August for the time period
1966-1976 as estimated by the British Meteorological Office,
Bracknell, England.
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creased to 0.66 (from 0.616 in the standard case) and the oceanic heat flux was set equal to
zero. In the ‘“‘strength’’ sensitivity study the frictional losses in ridging were taken to be nine
times the potential energy change (i.e., C = 10 C, in eq 3 of Appendix A).

Input fields to drive the model consisted of monthly climatological air temperatures and
dew points (from Crutcher and Meserve 1970), together with observed winds that were aver-
aged over 8 days and varied with time over the year-long period: May 1962 to May 1963.
(This particular time was chosen because of the simultaneous presence of one U.S.S.R. and
two U.S. drifting ice stations that provided observed ice drift data). For the calculation of
geostrophic ocean current fields, mean dynamic topography values reported by Coachman
and Aagaard (1974) were used. For the radiation code, parameterizations similar to those
employed by Parkinson and Washington (1979) were used. Specifically, daily global solar ra-
diation under cloudless skies was obtained by integrating an empirical equation by Zillman
(1972) over solar zenith angles for any particular day. (Zenith angles at half-hour intervals
for this purpose were obtained from a numerical solution of Kepler’s equation.)* Incoming
longwave radiation was obtained using Idso and Jackson’s (1969) formula for clear skies.
For cloud cover estimates, values from Huschke (1969) as reported by Parkinson and Wash-
ington (1979) were employed. Readers interested in more details on the various climatologi-
cal and radiation forcing fields are referred to Parkinson and Washington (1979).

S B S G S S s S e u S B B Hn e
20 3

Growth Rate (cm day™')
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o
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zc'vvrr[rlv]—rrrjulv

Figure 6. Growth rates versus time for
different ice thickness categories at
grid cell 8. Also plotted for comparison is
the wind speed versus time at this location.
Data points are plotted every 16 days and
Time (hdion doys) the ice thicknesses are labeled in metres.

Wind Speed (m s°')

* Personal communication with H. Holloway, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey,
November 1979.
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Figure 5. Fixed square-mesh grid used for numerical calculations. The num-
bered grid cells denote locations where time series of ice characteristics are moni-
tored.

To investigate the behavior of this fully coupled variable thickness sea ice model, several
seasonal simulations of the Arctic Basin ice cover were carried out. These simulations were
performed by combining the variable thickness equations developed here, i.e., e 4-7 and eq
AS, A7, A8 and A10, with a previously developed viscous-plastic ice dynamics model (eq 1-
11 of Hibler [1979]). For the standard experiment the resulting dynamic-thermodynamic sys-
tem of equations was numerically integrated for 5 years at 1-day time steps using forcing
fields with a 1-year periodicity. This integration time was found to be adequate to obtain sea-
sonally varying equilibrium results. For comparison, the thermodynamic equations only
were also integrated for § years with the same forcing. In both cases the integration was
started on 1 January with mean ice thicknesses of 3.2967 m (= 3.0 x 10° kg m™*/ g, where g, is
the density of ice) at all grid cells.

In the standard case this mean thickness was produced by including ice in the three thick-
ness categories centered at 1.46, 2.61 and 4.23 m (see, e.g., Fig. 2). The wind and water drag
coefficients and Coriolis parameter were identical to those used by Hibler (1979). The re-
maining constants are the mixed layer depth, d.... (set at 30 m following Semtner [1976]), and
various thermodynamic parameters (viz the surface albedo of ice under melting and freezing
conditions, the open water albedo, the oceanic heat flux, and sensible and latent heat trans-
fer coefficients). The values for these thermodynamic parameters for the standard case are
given in Appendix B. In addition to the standard case, two shorter 1-year dynamic-thermo-
dynamic simulations were carried out using the fourth year, 31 December, equilibrium
simulation results as initial conditions. The purpose of these shorter simulations was to
assess the sensitivity of the equilibrium results to ice strength and thermodynamic param-
eters. In the “‘growth’’ sensitivity simulation, the ice albedo under melting conditions was in-
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Figure 4. Ice strength versus thickness for
different redistributors. The solid and long-
dashed lines are for a uniform redistributor
with the maximum thickness scaling as the
square root (Hibler) of the thickness of ice be-
ing ridged (K = /), and linearly (modified
Hibler) with the thickness of ice being ridged
(K = 15). Frictional losses are assumed to be
equal to changes in gravitational potential
ho . Ice Thickness (m) energy.

P*, Ice Strength (10° Nm'")

Ch} (4a1*-3I"-1)
r-nr

pr =

where ' = /H*/h, for the Hibler redistributor and I' = K/2 for the modified Hibler case,
P* = ChiK

(Thorndike et al.),
P* = ChH'

(rubble redistribution). With a representative value for C of 0.8026 x10~ N m™, the various
scalings in Figure 3 yield the strength versus thickness results shown in Figure 4. In the con-
stant maximum cutoff case we have used the modified Hibler redistribution. However, from
the above strength equation it is clear that the Thorndike et al. definition would give about
the same strength versus thickness variation, but with all strengths 50% larger than the modi-
fied Hibler redistribution.

The main feature illustrated by Figure 4 is that, as expected, the square root scaling tends
to give higher strengths for thinner ice than the constant scaling. The reverse is true for thick
ice. However, in both these cases the three-dimensional stress will increase as the ice becomes
thicker. This is in contrast to the rubble case where the three-dimensional stress will be a con-
stant at =1.6x10* Nm™ (or = 2,3 1bin.”?).

NUMERICAL SIMULATION RESULTS

The previous section has analytically examined the character of the ridge redistribution
process. However, to examine the performance of this assumed process when it is coupled to

ice dynamic and thermodynamic equations, it is necessary to carry out numerical simula-
tions.

13




ridge made from a single thickness of ice would have vertical sides. The Hibler redistributor
avoids this feature by uniformly distributing ice from twice the block thickness up to some
maximum thickness. Also, perhaps more importantly, the maximum thickness is taken to
scale with the square root of the thickness of ice being ridged. This idea reflects the physical
notion that for equal amounts of deformation per ridge, doubling the ice thickness will not
double the maximum ridge height. This type of scaling is supported by observations (Tucker
and Govoni 1981). The modified Hibler case is a uniform redistributor without this scaling.
The rubble redistribution is an idealized case in which the same thickness of ice is always
created.

Comparison to ridge morphological data

The scaling characteristics of different redistributors can be tested by field examination of
ridge height and block size characteristics. A particularly useful data set for this purpose has
been obtained and analyzed by Tucker and Govoni (1981). This data set was taken off the
North Slope of Alaska. Figure 3 shows the salient characteristics of the data set that are rele-
vant to the redistribution theory. The error bars are the standard error in the mean ridge
height estimate. As can be seen from this figure, the square root scaling fits the data best.

To approximately convert the ridge height scaling to an ice thickness scaling, a 4:1 ridge
keel to sail ratio is assumed (Kovacs and Mellor 1974). With this scaling the square root case
is equivalent to an /* of 100 m in the Hibler redistributor, whereas the linear scaling repre-
sents a factor of K = 15 in the Thorndike et al. or modified Hibler redistributors. The rubble
case represents a fixed thickness H' = 20 m.,
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Figure 3. Comparison of different redistribution scaling laws with observed
data. The solid curve represents the Hibler scaling, the long-dashed curve the
Thorndike et al. or modified Hibler scaling, and the short-dashed curve the rubble
scaling.

Ice strength for different redistributors

Of particular relevance to ice mechanics are the ice strengths generated by different redis-
tributors. To get some feeling for these strengths, consider the special case of only one thick-
ness of ice, say h., being ridged. Formally representing this condition by P(%) = 8(h - A,),
one can substitute eq 16 into eq 18 and obtain analytical results for the ice strength. After
some algebra, different redistributors yield the following strength equations:
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where g(h)dh is the fraction of area covered by ice with thickness between & and & + dh. If we
consider a pure convergent deformation with convergencerate ¥ « y , then —V » v W,(h,2)
is the change in the ice thickness distribution g(k) per unit time because of deformation.

In eq 16, P(h) is a probability function specifying which categories are being destroyed by
ridging. The quantity v (A, 4)dh can be thought of as the area of ice put into thickness inter-
val (h, h+dh) when a unit area of ice thickness A ' is used up. Basically, the integral over ¥
specifies where the ice is transferred during ridging by changing the areal thickness distribu-
tion function g(h). It is this redistribution function v that is of particular relevance to this
paper. It can be shown (Appendix A) that to conserve mass, v (k’,h) must obey the equation

J v myhan = . a7
0

Strengths can be estimated from this kind of theory, if it is insisted that the rate of defor-
mation work equals the work done through ridge building (Rothrock 1975). This constraint
(see Appendix A) leads to the equation for the two-dimensional ice strength P*:

o
pr=c [ w.wan (18)
0
where the constant C

(e-a)f

C=q Py

is obtained by assuming the change in gravitational potential energy during ridging is equal
to the frictional losses in ridging. In this expression g, and g. are ice and water densities and
?is the acceleration of gravity.

Some specific redistributors
Several different forms for v (h,h;) have been suggested. Others, although not previously
suggested, are useful for pedagogical reasons. A variety of redistributors satisfying eq 17 are
listed below.
v(hi,h:) = y(h,—Kh) (1/K)
with K = constant (Thorndike et al.),
y(h,h) = [1/2(H*—-h)) for 2h, s h, s 2 VH* /A,
with H* = constant (Hibler),
y(hi,hi) = [2/h(K*-4)) for 2h, < h, < Kh,
with K = constant (modified Hibler),
y(h k) = Sl -H')Y (h/H')
(rubble redistribution).

The Thorndike et al. (1975) redistributor specifies that ice is transferred into a fixed multi-
ple of its thickness. While this is computationally simple it has the unrealistic feature that a
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a0
J ean <1,
or ridging ice if

<
f gdh > 1.
0

(Note that while g is normalized at the beginning of the time step, it will not be after eq 11.)
As part of this redistribution step, any negative g values (because of second order differenc-
ing in the horizontal advection equations) are set equal to zero. The net heat imbalance re-
sulting from this removal is used to increase the mixed layer temperature to ensure that the
heat budget is conserved. The final values of mixed layer temperature and g are obtained in
eq 14 and 15 by laterally melting ice until either no ice is left or the mixed layer temperature is
at freezing. Since any ice area lost through melting will be compensated for by increasing the
open water fraction, these steps ensure that g is normalized at the end of the time step. Note
that in this sequence deformation effects are included by the §.(uh) terms and by the open
water creation. These in turn can necessitate ridging. Handling the deformation in this some-
what indirect manner allows generalization to an Eulerian grid.

ANALYTIC EXAMINATION OF THE
RIDGE REDISTRIBUTION PROCESS

On the geophysical scale stresses in pack ice are largely determined by the ridge building
process. To model this process on a large scale it has been suggested that thin ice be redis-
tributed into thicker ice categories (see Appendix A). The precise manner in which this redis-
tribution should be carried out is not clear. As an initial guess, Thorndike et al. (1975) sug-
gested a redistribution that transfers ice into categories that are a fixed multiple of the initial
thickness. Ridge observations and theoretical considerations suggest that such a redistribu-
tion is unrealistic. In order to provide a more realistic parameterization of the ridging pro-
cess, a scaling law for ridge building is proposed here (see Appendix A). The purpose of this
section is to examine in more detail the strength characteristics of different redistribution
processes (including the particular scaling law proposed here), and to compare these process-
es to ridge morphological data.

Theoretical framework

In variable thickness sea ice models, the ridging process is parameterized by probability
functions specifying how different ice categories are modified by deformation. Following the
notation used in Appendix A, the function W.(h,g) describes this ridging process:

Whg) = 1-PU) g+ [ v (".n) Ph) gty dn') / [ 1PGh) gk -
0 0
J vn) Phyghydh Y (16)
0

-
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the redistributor that transfers thin ice to thicker categories, and T'is the boundary layer tem-
perature. Also

F@ = [ An) gy dn
0

Fu®) = [ fun) gthy dn
0

Fuag = [ FughT) dn
0

For illustration, only the x component of the ice velocity field (denoted by «) has been used
and the freezing point of seawater has been set equal to zero. Also, the Du term schematical-
ly represents a horizontal diffusion term. In the complete code these diffusion terms are
identical to those used in the two-level model (Hibler 1979) and were included for suppres-
sion of nonlinear instabilities. In time, u is defined at £'** and the other variables in eq 8 and
9 at ¢'. At the beginning of the time step it is assumed that the vertical growth rates are ob-
tained from eq 5. To advance g and T requires the following steps (spatial and thickness dif-
ferences are denoted by &, and é., time locations by superscripts, and intermediate values
within the time step by subscripts):

gt = g—Ars.(ut" g) (10)
&' =g - Ar(8,[u" (' +£1)0.5] + 8.(f'g) + Dg' — Ya(u'* ")} (1)
T*' = T+ Aff(g)- Fu(8] (12)
& =g+ ALy, (g, ") (13)
g = gi+AtF(g"', T) (14)
T = Ti+ AtFu (g}, T). 15)

In this sequence eq 10 provides a provisional value of g to approximately center the spatial
advection term. This approach supplies a modified Euler step (Kurihara 1965), which is sec-
ond order accurate in time for the horizontal advection. After this takes place the remaining
steps are basically sequential splitting steps. Equation 11 determines the change of g due to
spatial advection, thickness advection and changes in open water. All advection terms are
done conservatively so that all g values are conserved over the global grid. In addition, as dis-
cussed in Appendix C, the thickness advection term is done in a manner that conserves the
surface heat budget components and is stable for forward time steps. In eq 12 any heat ab-
sorbed by open water that is not used in the vertical growth rates is used to increase the mixed
layer temperature. In eq 13 the mechanical redistribution process is carried out (see Appen-
dix A). This consists of normalizing g by either creating more open water if
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SCHEMATIC ARRANGEMENT OF
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I Figure 2. Schematic arrangement of thickness partition used in numerical calculations,

growth by Martin (1979) shows that growth of thin ice can be substantially enhanced by
frazil ice formation. Such ice is derived from small ice crystals that form in the water col-
umn. Recent observations by Ackley et al. (1980) of the Antarctic sea ice field indicate that
the frazil ice component of Weddell Sea pack ice is substantially larger than that found in the
Arctic. As a consequence, inclusion of enhanced thin ice growth may be important for Ant-
arctic pack ice simulations.

M T

Numerical scheme

Equations 4-7 are numerically solved as an initial value problem using finite difference
techniques. While the strengths are generated differently, the numerical coupling of these
equations with the dynamics proceeds in the same way as employed previously for a coupled
two-level model (Hibler 1979). Since the numerical scheme for the two-level model is dis-
cussed by Hibler (1979), it is enough here to present the time marching scheme and finite dif-
ferences used to solve eq 4-7. The time marching scheme is briefly sketched below. Details
on the thickness partition and finite difference code are given in Appendix C. In general the
numerical complexity of the equations is substantially increased by the inclusion of the ad-
vection terms. These advection terms arise because fixed grids in both space and thickness
are used. The spatial grid is a regular mesh staggered configuration (see Fig. 5, Hibler 1979)
with thickness characteristics defined at the center and velocity points defined at the corners.
l The thickness grid is composed of an arbitrary number of irregularly spaced thickness levels.
- For the simulations performed here, ten thickness levels are employed as shown in Figure 2.
In this grid larger categories are used for thicker ice since growth rates change less rapidly
there. Open water is considered simply by having one thickness category centered at zero
thickness. These thickness levels remain fixed. However, the relative areal extent of the ice in
each category evolves in response to vertical ice growth, spatial advection, deformation and
lateral melting.

To solve eq 4-7 a series of splitting operations is used. In a fixed Eulerian grid, the se-
quence in which these operations are performed is critical since it is important that certain
operations be done last to ensure conservation of several quantities. The time marching
scheme for the coupled thickness equations can be illustrated using the following simplified
"_ equations:
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tion to the amounts of heat absorbed by leads and not used in increasing the rate of vertical
melt. Equation 7, on the other hand, states that there will be enough instantaneous lateral
melt to either lower the mixed layer temperature to freezing or to remove all the ice. Also, eq
7 assumes that lateral melt reduces all ice thicknesses by the same percentage. The physical
argument here is that ice will lose mass by lateral melting in proportion to its thickness. This,
in turn, is based on the physical notion that thicker ice will have a larger vertical interface
with the ocean than thinner ice. Coupling the equations in this way removes the necessity of
considering any special cases. For example, cooling off a warm, ice-free mixed layer is natu-
rally treated in eq 5-7 by simultaneously freezing ice and removing the frozen ice by lateral
melting.

While better parameterizations are needed, numerical experiments with this mixed layer
growth model, coupled to the variable ice thickness model discussed earlier, can help deter-
mine the relative role of dynamics and thermodynamics in sea ice growth, drift and decay.
The idea in the (0) =0 case is that under *‘winter conditions’’ the growth rates of the sea ice
cover are basically vertical and are dominated by heat budget considerations. This assump-
tion is reasonable in the Arctic Basin, where leads do not long remain ice-free, and is consist-
ent with sensitivity studies by Maykut (1978). The heat budget code described here approxi-
mates these features. The main shortcoming is that the effect of snow cover on the conduc-
tivity of the snow-ice system is not included. While this feature is not critical to equilibrium
thicknesses (see, e.g., Maykut and Untersteiner 1971), snow does substantially affect the
growth rates of thin ice (Maykut 1978). Improvements of this parameterization are needed.
However, it should be noted that in a coupled model inadequate estimates of thin ice growth
rates may well be offset by larger thin ice growth estimates shortening the thin ice lifetime.
Consequently, time-averaged energy exchange may not be critically affected.

Under melting conditions the open water heat absorption terms reflect the fact that
boundary layer warming and lateral melting can substantially affect the decay of sea ice. Ef-
fects of this kind have been discussed in reviews by Rothrock (1979), Wadhams (1980) and
Hibler (1980b). Lateral melting has been particularly emphasized by Zubov (1945) and Lan-
gleben (1972) in studies of shore-fast ice decay. These authors have explained observation of
shore-fast ice decay by using absorbed radiation solely in decreasing the horizontal dimen-
sions of floes. Wadhams (1980) has suggested that near the ice edge, lateral melting may de-
pend upon the geometric properties of the ice. Specifically, as floes become smaller and more
numerous, the effective “‘length’* of flow edges increases. In addition to lateral melting, the
movement of the ice and the wind mixing will cause the ice to move over regions that were
formerly leads. Summer observations of the mixed layer and ice drift by McPhee (1980b) in-
dicate that substantial vertical mixing can be induced by the wind and ice motion. Also, near
the ice edge turbulence and wave effects can cause horizontal mixing and enhance vertical
melt (see, e.g., Wadhams et al. 1979). The parameterization suggested here approximates
these processes primarily by increasing vertical melting due to heat absorption. In addition,
for a sufficiently loose pack, lateral melting terms are added.

In both the decay and growth cases a possible modification would be to allow different
growth and decay rates for thick ice. Very thick ice in the form of ridges may well behave dif-
ferently than level ice. Ablation observations by Koerner (1973), for example, indicate that
the upper surfaces of first-year ridges ablate much more rapidly than level ice. Such effects
may be even more pronounced on the bottoms of ridges, where the deep keel of a ridge al-
lows ablation at the sides as well as on the bottom of the ice. In light of these considerations
some type of parameterization of the growth rates as a function of the geometric properties
of pack ice is needed.

Finally, in the growth case it is possible that thin ice growth rates may be substantially
larger than those based on heat budget considerations. Specifically, analysis of young ice
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Under conditions where open water is losing heat to the atmosphere, the heat budget
growth rates {denoted by f,(h)] are taken to be the vertical growth rates in eq 4. However,
when open water is absorbing heat, the heat is allowed to mix underneath the ice flow and
decrease the vertical growth rate of all categories down to some minimum value. Any re-
maining heat is allowed to either cause lateral melting or raise the temperature of the mixed
layer. In this specific parameterization the mixed layer temperature is always kept at freezing
in the presence of an ice cover. Consequently, all available heat absorbed by leads and not
used in vertical melting is used in lateral melting until the ice disappears. Also, under growth
conditions no ice is allowed to form until the mixed layer reaches the freezing temperatures
of seawater.

The vertical rates in this parameterization may be formally described by

Max([0, £:(0)] ifh=0

fh) = o)

Max{f.,[f,(h) + L;‘i-'l Min(f.,(O),O)]} ifh>0

where g, is the fraction of area covered by ice, which is defined as
[+ J
& = Lim [ 2(hah.
€

Specifying a minimum decay rate, f;, is based on the physical notion that there is a limit to
how rapidly sea ice may melt in water near the freezing point. In the simulation performed
here, f; is taken to be -15 cm/day. This number is close to the maximum wave-induced melt-
ing rates calculated by Wadhams et al. (1979).

The lateral melting and warming of the mixed layer are described by the coupled equations

Ve = 271-2+[Q./(C.d...,)13 [ F@h Tushdn + [ AD-fleant @
0 0
~AT..)eh for h >0
Fl(h:g, Tmu) = (7)
C(T...)ed(h) forh =0
where

OTn) = MgL_n_lz_) C, 'f
oh

with % the mean ice thickness
[ ]
R={ shhdn.
0

In these equations T... is the mixed 'ayer temperature in Kelvins, d... is the mixed layer
depth, O, is the volumetric heat of fusion of ice (set at 302 MJ m~*), and C, is the volumetric
heat capacity of water (set at 4.19 MJ m™?). Also, in eq 6 and 7 the freezing temperature of
seawater is taken to be 271.2 K. Equation 6 specifies that the mixed layer temperature will
decrease in proportion to the mass of ice removed by lateral melting and increase in propor-
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causes the more general thickness distribution equation to become

%—$+V~(y_g)+a—§-fh£)=ﬂ+\lo. )

Considerable complexity in the equation resides in the mechanical redistribution function
¥. Because of this complexity a more complete discussion of ¢ is given in Appendix A.
There, a specific redistribution function is proposed and the relation of the ice strength to the
ice thickness distribution is briefly discussed. In addition, because of the importance of ridg-
ing, the ramifications of the ridge distribution process proposed in Appendix A are analyti-
cally examined and compared to observed data in a later section. However, for the present
discussion it is enough to note that y creates open water under pure divergence and transfers
thin ice to thick ice categories under pure convergence. For an arbitrary deformation state,
the open water creation and ridging are considered to be simultaneous. In addition the
strength of the system is related to the amount of thin ice, so that thicker, more compact ice
will exhibit greater strength and, hence, greater resistance to compression.

Heat budget and oceanic boundary layer

Given vertical and lateral growth rates, one could use the thickness distribution (eq 4) to
determine the evolution of g. However, to determine these growth rates is a complex task
and it minimally requires consideration of the oceanic boundary layer and heat budget at the
air/sea ice interface. For this purpose a simple parameterization consistent with available
knowledge is suggested here. Some of the complexity that might be considered in a more de-
tailed parameterization is discussed later in this section.

Basically, at each ice thickness category vertical growth rates are estimated 1) from heat
budget considerations at the top and bottom surface of the ice and 2) by adding, via lateral
mixing, some of the heat absorbed by leads. In the heat budget calculations a simple time-
independent thermodynamic sea ice model is used. Following Semtner (1976), this model ap-
proximates the heat transfer through the ice by assuming a linear temperature profile to-
gether with a constant ice conductivity. However, in contrast to Semtner (1976), the conduc-
tivity effects of a snow cover are not considered. Instead, following Bryan et al. (1975) and
Manabe et al. (1979) the model approximates the effects of snow cover by allowing the ice
surface albedo to be that of snow when the calculated surface temperature is below freezing
and that of snow-free ice wh=n the surface temperature is at the melting point. With these as-
sumptions the upward heat flux (I} through ice of thickness H is

Iy = (K/H) (T, - T.)

where X is the ice conductivity, 7, the water temperature and T, the surface temperature of
the ice. This simple thermodynamic model is used in conjunction with a surface heat budget
computation similar to that of Parkinson and Washington (1979) and Manabe et al. (1979).
In this computation (see Appendix A) the surface temperature of the ice that balances the
surface heat budget is obtained by iteration. This temperature then dictates the conduction
of heat through the ice and, hence, the ice growth rate. If the iteration yields an above-
freezing value, the surface temperature is set at the freezing point. Surface and bottom abla-
tion rates are then determined by imbalances in the surface heat budget and by the conduc-
tion of heat into the mixed layer. As in Maykut and Untersteiner (1971), the effect of heat
transfer from deep, warmer ocean water is approximated by assuming a constant oceanic
heat flux into the mixed layer. This thermodynamic model and surface heat budget computa-
tion is described in more detail in Appendix B.
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ice rheology a viscous plastic constitutive law is used. Rigid plastic behavior is approximated
in this law by allowing the ice to flow plastically for normal strain rates and to creep in a
linear viscous manner for small strain rates. Documentation of this dynamical code is avail-
able (Hibler 1980a).

In the work presented here, the dynamical formulation used by Hibler (1979) is employed.
However, a more general treatment of the ice thickness distribution, the ice strength and the
thermodynamic code is presented.

Ice thickness equations

For the purposes of this paper the ice is considered to be a two-dimensional continuum
with a velocity field «. This velocity field is obtained by solving a momentum balance (see
Hibler 1979) that includes the effects of internal ice stress. The stress state in the ice is de-
scribed by a plastic constitutive law

o; = 0y(éy, P*) )

where o, is the two-dimensional stress tensor, ¢, the strain rate tensor and P* the ice
strength. As discussed in more detail in Appendix A, P* is a function of the amount of thin
ice present in the ice cover.

As in Thorndike et al. (1975), the ice thickness characteristics are described by an areal ice
thickness distribution g(h, x, f) where g(h, x,#)dh is the fraction of area (in a region centered
at position x at time £) covered by ice with thickness between # and 4 + dh. This distribution
evolves in response to deformation, advection, growth and decay. Neglecting lateral melting
effects, Thorndike et al. (1975) derived the following governing equation for the thickness
distribution:

% 1 gup + By @

where f is the vertical growth (or decay) rate of ice of thickness 4 and ¢ is a redistribution
function (depending on / and g) that describes the creation of open water and the transfer of
ice from one thickness to another by rafting and ridging. In general, fis a function of g(A),
and ¢ is a function of both g(/) and the rate of deformation. Except for the last two terms,
eq 2 is a normal continuity equation for g. The last term on the left-hand side can also be
considered a continuity requirement in thickness space since it represents a transfer of ice
from one thickness category to another by the growth rates. An important feature of the
Thorndike et al. (1975) theory is that it presents an ‘‘Eulerian’’ description in thickness
space. In particular, growth takes place by rearrangement of the relative areal magnitudes of
different thickness categories.

Equation 2 can be formally generalized to include lateral growth by simply adding a source
and sink term F.(g,h) such that

-]

f F.dh = 0. 6))
0

Equation 3 follows from ti.e fact that, by definition, lateral melting (or freezing) of ice will
be compensated for by a change in ihe extent of open water. In addition F, >0 for A = 0
and F, <0 for h > 0. These conditions reflect lateral melting decreasing the areal extent of
ice while increasing the open water extent. The addition of this lateral growth term to eq 2
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Figure 7 (cont’d). Average April and August thickness con- z‘f.

tours (m) for the fifth year of the standard and ‘‘thermo- r :
dynamics-only’’ simulations. The dashed line represents the =4

average 40% ice concentration contour at the end of August for the =
time period 1966-1976 as estimated by the British Meteorological <
Office, Bracknell, England. e
fects are very similar to those obtained by Washington et al. (1976), with ice exceeding 3 m in :i
the central basin in winter, and all the ice at certain near-shore locations melting in summer. o
The standard case, on the other hand, exhibits a pronounced ice buildup along the Canadian :-::
Archipelago. The reason for the spatial variation in the standard case is apparent from ex- -
amination of the annual ice velocity field in Figure 8. This field exhibits a clockwise Beaufort .::-:
Gyre and transpolar drift in agreement with observations of the mean annual drift (see, e.g., e
Gordienko 1958). While instantaneous velocities may differ substantially, on the average the '!
drift tends to thin the ice off the Alaskan and Siberian coasts while increasing the ice thick-
ness off the Canadian Archipelago. The shape and magnitude of the standard case ice thick- :'.':
ness contours agree well with observed estimates. Figure 9, for example, shows observed -
results based on submarine data, portions of which are reported by LeShack et al. (1971). .
Similar spatial thickness variations have been obtained from airborne and subsurface studies !_g

of the ridge statistics in the Arctic Basin (see, e.g., Hibler et al. [1974] and Wadhams [1981]).

The summer ice edge characteristics of the standard case are, however, less realistic. Spe-
cifically, while the shape of the ice edge is reasonable, its location is consistently too far from
shore. It also appears that the standard case is yielding rather large amounts of open water in
the central basin. This feature is demonstrated in Figure 10, which shows mid-month com-
pactness transects from July through October. These transects were taken along a line con-
necting grid cells 4 and 8 (see Fig. 5). Using a large amount of data from aerial reconnais-
sance flights, Wittmann and Schule (1966) have estimated that from August to October there
is typically about 12% open water in the Canadian Basin (between the Pole and Alaska), and
7% in the Eurasian Basin (between the Pole and Franz Josef Land). The August through Oc-
tober averages of the simulated values agree with the geographical trend of these observa-
tions, but are somewhat larger. However, the substantial month-to-month variations in the
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simulated compactness values (see Fig. 10) indicate that real time observations are needed for
detailed verification. Similar considerations also apply to ice edge variations, since year-to-
year values of the ice edge can differ significantly from climatological means (see, e.g.,
Walsh and Johnson 1979b).

Of particular interest to this author are the ridge buildup results. While the model does not
explicitly keep track of ridging, it is possible to determine the volume of deformed ice created
over an annual cycle at a fixed location. Figure 11 shows contours of this quantity. The gen-
eral shape of the roughness contours agrees well with surface roughness observations in the
western Arctic Basin (Weeks et al. 1971, Hibler et al. 1974). The two major features are a
heavy buildup of ridging off the Canadian Archipelago and less ridging in the Beaufort Sea
than near the Pole. Note, however, that there is a zone of heavy ridging just off the North
Slope, in agreement with observations by Tucker et al. (1979). The other major feature is a
tongue of high ridging further offshore near the tip of Greenland. Roughness data obtained
from submarine sonar profiles by LeShack* also show such a tongue.

Ice edge evolution and sensitivity

The ice edge characteristics take several years to fully evolve. This evolution time is illus-
trated in Figure 12, which shows the mid-September ice thicknesses along a transect perpen-
dicular to the North Slope. As is apparent, the ice edge takes about 3 years to completely
develop, with the difference between the first two summers being most pronounced. Because
of this long evolution time, it is possible that some of the unrealistic resuits may be attribut-
able to the choice of the wind field for a particular year. By considering interannual variabil-
ity in a simulation, earlier years with, say, less persistent offshore winds in summer could re-
duce the formation of an excessive ice edge in a particular year.
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Figure 12. Evolution of the mid-September
(day 257) ice thickness characteristics in the
standard simulation. Thickness transects along a
line connecting grid cells 4 and 8 are plotted.

* Personal communication with L.A. LeShack, LeShack Associates, Silver Springs, Maryland, 1979,
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Figure 13. Average August thickness contours (m) for the
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However, while the interannual variability may be a factor, it seems likely that the unreal-
istic ice edge is primarily caused by inadequate tuning of the dynamic and thermodynamic
parameters. This possibility is supported by the 1-year sensitivity studies. The improvement
yielded by these simulations is illustrated in Figure 13, which shows August thickness con-
tours, and Figure 14, which shows mid-August compactness transects. The initial conditions
for these simulations were the 31 December data from the fourth year of the standard
simulation. Consequently, the different ice edge characteristics only have about 8 months to
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Figure 14. Mid-August compactness transects
(through grid cells 4 and 8) for the standard and
two sensitivity simulations.

evolve. Even over this short time there is a significant improvement in both the ice edge loca-
tion and the amount of open water formed in the central Arctic. Note also that both sensitiv-
ity simulations yield a sharper ice edge with a rapid rise to about 40% ice concentration.

While the increase in ice stress in the ‘‘strength’’ study is probably excessive, the change in
parameters for the ‘‘growth’’ simulation is within the range of uncertainty of the forcing pa-
rameters. The ice albedo under melting conditions for the high-growth case, for example, is
equal to Semtner’s (1976) adjusted value for multiyear ice. While this value may be a bit high
for ice covered with melt ponds (see, e.g., Langleben 1971), summer radiation values are not
known precisely because of, for example, uncertainties in cloud cover. Also, adding in in-
creased ice growth rates from snowfall could largely offset the oceanic heat flux term in the
simple thermodynamic ice model used here.

Analysis of these sensitivity results shows that the reasons for the improvement of the ice
edge are quite different for the two sensitivity simulations. In the case of the thermodynamic
sensitivity study, it is mainly a case of reduced summer melting, which simply melts less ice.
In the dynamics case the effect is primarily one of reducing offshore advection, especially at
a critical time in the early spring. The advection effect is illustrated in Figure 15a, which
shows the difference between ice growth and actual ice thickness at grid cell 4. A major dif-
ference between the simulations occurs in the spring at approximately day 120. At this time
both the high-growth simulations show a sharp reduction in thickness owing to the dy-
namics, whereas the high-strength case does not. Examination of the high-strength case
shows that the basin is practically frozen by the high ice stresses in early spring, thus prevent-
ing such offshore motion. This lack of offshore motion in turn keeps the ice from thinning
early in the melt season and, hence, reduces the amount of offshore open water. While such
motionless situations are unrealistic for this year (see the next section), they do occur under
certain onshorc or quiescent wind conditions as documented by Thorndike and Colony
(1980) for the Beaufort Sea.

The role of reduced summer melt for the high growth case is illustrated in Figure 15b,
which compares ice thicknesses versus time at grid cell 6. This figure also demonstrates the
importance of the boundary layer heat storage on fall ice freezeup. Since the open water al-
bedo has not been changed, this reduced summer melt is primarily caused by reduced ice
melt. (A smaller portion of the reduction is attributable to setting the oceanic flux term equal
to zero.) On the basis of this sensitivity study it seems likely that inclusion of a snow cover
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Figure 15. Time series of the difference between parameters.

would improve the simulated ice edge. With a snow cover it might take several weeks to melt
the snow and reduce the surface albedo to snow-free values. In the simplified model used
here, the surface albedo changes immediately after melting conditions commence.

It is also likely that some of the excessive summer melt in the standard case is caused by an
unrealistically small albedo of open water (0.1). Observational estimates (Langleben 1971)
are closer to 0.2, a value that is commensurate with albedos in the polar regions used in most
climate models (see, ¢.g., Manabe and Stouffer 1980).
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It is possible that these sensitivity results may have relevance to ice edge forecasting.
Rogers (1978), for example, has found the air temperature, in the form of thawing degree
days, is the parameter that correlates most highly with the summertime ice margin off the
North Slope. Barnett (1980), on the other hand, has found that pressure changes in April
correlate well with a combined severity index of North Slope ice conditions in August and
September. The simulation done here suggests that, while thermodynamics probably con-
trols the overall degree of melt, dynamical effects early in the spring may be critical in thin-
ning out the near-shore ice. This thinning can then produce a local ice edge even under rela-
tively ‘‘cool” conditions.

Ice thickness characteristics off the Canadian Archipelago

The ice thickness characteristics off the Canadian Archipelago also require several years to
fully evolve. However, this evolution is one of thickness buildup rather than decay. Some of
the evolution characteristics are illustrated in Figure 16, which shows the ice thickness and
fraction of thick ice on a transect between grid cells 2 and 8. Also shown in this figure is the
total amount of ice ridged per year. The observed data were taken from submarine sonar es-
timates of ice thickness and the thick ice fraction obtained by Wadhams (1981) using Octo-
ber 1976 data from the HMS Sovereign.

The main characteristic of the evolution is a gradual increase in ice thickness near the
coast, coupled with a decrease at the Pole. The slow buildup comes from to new thin ice be-
ing ridged each year, thus gradually increasing the thickness. The thinning of ice near the
Pole, on the other hand, appears to be primarily an advection process, with thinner ice from
the Beaufort Sea being brought in. The 2-year lag is needed for this thinning because the ice
in the Beaufort Sea is rather thick at first because of the initial conditions. This decrease in
thickness is also accompanied by a more peaked and less asymmetric thickness distribution
at the Pole on year 5 than on year 2. This characteristic is illustrated in Figure 17, which
shows the interannual evolution of the simulated ice thickness distribution near the Pole. For
a comparison to observations, Figure 17 also shows observed ice drift distributions near the
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Figure 16. Evolution of the simulated ice thickness
characteristics off the Canadian Archipelago along a
transect through grid cells 2 and 8. The observed thick-
ness results were obtained in (a) by multiplying ice draft data
Jrom Wadhams (1981) by 1.1 to approximately convert ice
drafts to thickness and in (b) by using Wadham’s areal per-
centages for ice drqfts deeper than 5 m.
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Figure 16 (cont’d). Evolution of the simulated ice
thickness characteristics off the Canadian Ar-
chipelago along a transect through grid cells 2 and 8.
The observed thickness results were obtained in (a) by
multiplying ice draft data from Wadhams (1981) by 1.1 to
approximately convert ice drafts to thickness and in (b) by
using Wadham s areal percentages for ice drafts deeper than
Sm,

Pole obtained by Wadhams (1981) and by LeShack.* The LeShack data were obtained from
the February 1960 cruise of the USS Sargo.

Figures 16 and 17 show the simulated results to have a thick ice percentage similar to Wad-
hams’s data, but somewhat smaller thickness values, especially near the Pole. Part of this
discrepancy may arise from insufficient growth. In the growth sensitivity study, for example,
there is a considerable increase in thickness after only 1 year. This feature is shown in Figure
18, which compares sensitivity transects off the Canadian Archipelago with the standard
case. However, there may also be significant amounts of interannual variability. The
LeShack data at the Pole, for example, are in better agreement with the simulated values
than Wadhams’s data.

An interesting feature shown by the net ridging is a slow evolution of a zone of high ridg-
ing several hundred kilometres off the coast. This feature does not occur the first few years,
which indicates that it is probably related to the spatial variations in ice strength that are
gradually built up. While this ridging peak is not manifested in the simulated thick ice per-

*Personal communication with L.A. LeShack, LeShack Associates, Silver Spring, Maryland, 1979.
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Figure 17. Interannual evolution of the simulated ice thickness distribution at the Pole (grid
cell 8). The observed ice draft distributions were obtained by Wadhams (1981) using October 1976
HMS Sovereign data, and by LeShack (personal communication) using February 1960 USS Sargo data.

centage (which falls off smoothly) there is an indication of a discontinuous fall-off at about
500 km in Wadhams’s observed thick ice percentages. Also, and perhaps more relevant,
basin-wide ice roughness contours compiled by LeShack* indicate such an offshore rough-
ness peak in this region.

The relative roles of ridging and growth in maintaining the thick ice near the coast are
demonstrated in Figure 19. This figure shows the net ice transfer by ridging and vertical
growth at grid cell 2 over an annual cycle together with the thickness distribution on day 129.

*Personal communication with L.A. LeShack, LeShack Associates, Silver Spring, Maryland, 1979.
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Over the year, ridging transfers thin ice up to about 3 m thick to thicker categories. The
growth, on the other hand, causes a net loss of thick ice. In seasonal equilibrium, imbalances
between these two terms are accounted for by advection and deformation (and to a much
lesser degree lateral melt). For comparison it is worth noting that plots similar to these yield
ice up to only about 2 m being ridged near the North Pole and ice up to only about 1 m being
ridged in the southern Beaufort Sea.

Comparison of observed and simulated ice drift

For a direct comparison to observation, the simulated drift rates of three drifting ice sta-
tions were determined by interpolation. Table 1 compares some of the simulated deforma-
tion rates and net drift to the observed values. The net drift is the average drift from day 140
(1962) to day 109 (1963) of the three drifting ice stations. The x and y strain rates are based
on 11-day averaged velocity fields at the ice station locations. Except for the high-strength
case, which yields small deformation fluctuations, these comparisons show relatively similar
statistical behavior for the simulated deformation rates but significant differences in the
long-term drift. Specifically, the simulated net drift for the high strength case is almost half
that of the standard case. It is also notable that in the standard simulation the fifth-year net
drift is about 30% larger than the first-year because of a gradual reduction in ice strength

Much of the reduction in net drift in the high-strength case is caused by an effective stop-
page of almost all motion in April and May. This feature is apparent from Figure 20, which
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Figure 20. Simulated and observed drift rates of ice station Arlis (May 1962-April 1963).
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Table 1. Observed and simulated ice station drift.

Sth year Ist year High- High-
standard standard strength growth
simulation simulation simulation simulation Observed
Net ice station drift 702 km 567 km 339 km 682 km 562 km
Net drift angle 26°W 27°W 13°W 26°W 6°W
Standard deviations
of strain rate:
€ 0.0033 day*  0.0038 day*  0.0028 day™'  0.0035 day  0.0028 day*
€y 0.0024 day™' 0.0024 day  0.0021 day™' 0.0025 day'  0.0033 day™'
Correlation coeffi-
cients between simu-
lated and observed
strain rates
€r 0.33 0.38 0.31 0.36 -
€y 0.65 0.65 0.56 0.70 —
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Figure 21. Outflow time series for the standard and high-strength simulations. (Units are
metres of ice averaged over the basin. For comparison 1.0 m/yr is equivalent to 0.225 Sv.)

compares the simulated and observed drift rates for ice station Arlis. The ice velocity also
stops in the outflow region between Greenland and Spitsbergen, as demonstrated by the ice
thickness outflow time series in Figure 21. This ‘‘freezing up’’ of the basin takes place pri-
marily in response to an increase in the ice strength resulting from removal of thin ice by
growth and deformation. A secondary effect may be changes in the mean wind patterns as
the high pressure system over the Beaufort Gyre weakens and the ice circulation is more
dominated by a low pressure system approximately centered over Severnaya Zemlya (Soviet
islands at upper-right-hand portion of grid). This low pressure pattern is most fronounced in
March when the stoppage begins. There is also some reduction in mean wind speeds in April
and May, but this effect appears secondary, as illustrated, for example, by the substantial
simulated drift rates of the observed and the standard cases in April and May (Fig. 20).
Temporal variations in ice strength for both the standard and high-strength simulations
are shown in Figure 22. The seasonal variation in strength occurs in response to the thermo-
dynamic forcing  which in summer melts ice and in winter removes thin ice by freezing. This
seasonal variation is consistent with seasonally varying best-fit ice strengths obtained by Hib-
ler and Tucker (1977) and with analysis of ice drift in summer by McPhee (1980b). Note that
the main reduction in strength takes place about at day 160 when ice begins melting in the
central basin (see Fig. 6). However, in the standard case some seasonal weakening begins ear-
lier. This probably happens because open water created by deformation is not removed by
freezing after about day 120. Superimposed on this seasonal variation are fluctuations that
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Figure 22. Ice strength time series for the standard
and high-strength simulations.

are especially proiiounced in the near-shore region. These large fluctuations arise because the
ice strength is determined only by the thinnest 15% of the ice cover (see Appendix A).

It is notable that the standard case strengths are about an order of magnitude higher than
those obtained by Thorndike et al. (1975). While part of this can be attributed to including
frictional losses, the main increase is caused by the way the redistributor used here transfers
thin ice into thicker categeries under deformation. It is also notable that the strength range
spanned by the standard and high-strength simulations is similar to the range deduced from
near-shore ice dynamics studies by Pritchard (1978). In particular, using a spatially constant
strength in a localized near-shore region, Pritchard found a best-fit compressive strength of
=4x10* N m~'. When the compressive strengths were an order of magnitude higher than
this, the ice velocity field was almost entirely determined by the boundary motion. The simu-
lations conducted here indicate that such a dominance by boundary motion can also occur in
a fully coupled, basin-wide dynamic-thermodynamic model when frictional losses in ridging
are sufficiently increased. This result may have relevance to paleoclimate arguments con-
cerning stoppage of the ice flow from the Arctic. In particular, these results suggest that
higher growth rates coupled with a modest increase in frictional losses might cause the basin
to effectively freeze up in winter.

Mass balance characteristics

A dominant feature of the variable thickness model is an increased seasonal variation in
the ice growth and decay. This feature is illustrated in Figure 23, which shows the basin-aver-
aged thickness time series of the standard and thermodynamics-only simulations. While
some of the increased growth is ascribable to a large amount of open water in the fall, much
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Fer computation, eq Bl may be rewritten in the form:

A+ A(T)+(K/HNT.-T) =0 (B2)

where A, is a constant and A:(7;) is a nonlinear function of T;. Using a Newton-Raphson
procedure, one solves eq B2 for T;. If T; is greater than 273,16 K it is set equa: t0 273.16 K. In
both cases the growth rate is then calculated from

fB(H) = —[AI+A1(T;))+F;)]/QI (83)

where Q; is the volumetric heat of fusion of ice, set at 3.02x10* J m™, and F, is a constant
oceanic heat flux into the mixed layer from the deep ocean. In the case of open water, eq B3
is also used to estimate the growth rate, with the modification that the albedo is set equal to
0.1, T; is set equal to 7,,, and the latent heat transfer coefficient D; is slightly different. In any
given grid cell the water temperature is calculated from the mixed layer equations discussed
earlier (eq 6 and 7), and in the presence of the ice is always equal to 271.2 K. Note that while
snow cover is not considered explicitly in this model it is easy to determine the growth rate of
ice with, say, a snow cover of depth hs on top. For this purpose (following Semtner [1976]),
K in eq Bl and B2 is simply replaced by

Kx
(h/H)+(K./K)

where K, is the snow conductivity.

To examine the behavior of this heat budget code in more detail, the individual compo-
nents were compiled every 16 days at selected locations. Table B1 lists the components of the
heat balance at grid cell 8 for winter growth conditions (18 February), summer melt condi-
tions (26 June), and for a growth-melt transition period (10 June). The atmospheric input
values for these times and locations are shown in Table B2. For comparison, also shown in
these tables are central Arctic heat balance estimates obtained by Maykut (1978) together
with his forcing components.

In making this comparison it should be noted that in addition to different forcing fields
there are differences between Maykut’s (1978) sea ice thermodynamic formulation and that
used here. In particular, for thin ice up to a metre thick, Maykut allows the conductivity to
be temperature-dependent and the surface albedo to decrease with thickness. He does, how-
ever, assume a steady state equilibrium heat budget. For thick ice (3 m), Maykut uses the

Table B2. Central Arctic (grid cell 8) atmospheric tem-
peratures, dew points and wind speeds.*

18 February 10 June 16 June

Air temperature (K) 241 269 272
(242) (269)
Wind speed (m ') 6.17 6.18 1.47
) (%)
Dew point temperature (K) 236 268 271

*Central Arctic values used by Maykut are given in parentheses and
represent conditions on the first day of the the month. Maykut as-
sumed a relative humidity of 0.90 in February and 0.96 in June.
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APPENDIX B: HEAT BUDGET CODE

To solve for the ice growth rate a surface heat budget computation similar to that of Man-
abe et al. (1979) and Parkinson and Washington (1979) is used. This heat budget code incor-
porates a time-independent thermodynamic sea ice model similar to the simplest of a hier-
archy of models developed by Semtner (1976). Semtner’s simplest time-independent model
utilizes a constant conductivity, together with a linear temperature profile. In addition, a
seasonal snow cover is allowed to build up and decay. Both the conductivity and the snow-
free surface albedo were adjusted by Semtner (1976) to compensate for not including internal
melting in summer. With these adjustments, Semtner was able to produce mean annual
thicknesses that agreed very well with a more complete time-dependent model developed by
Maykut and Untersteiner (1971). In the computations done here, Semtner’s (1976) time-inde-
pendent approach is used. However, following Manabe et al. (1979) the effects of snow
cover are approximated only implicitly by changing the surface albedo of the ice to snow val-
ues for below-freezing surface temperatures.

The basic surface heat balance equation in the presence of an ice cover is (where fluxes into
the surface are considered positive)

(1-a)F+F.+D, |Us| (T.- T)+ D, |Us| [qu(T.) — qTo)]
- DT +(K/H(T.-To) =0 (B1)

where a = surface albedo

= surface temperature of the ice

air temperature

ice conductivity

ice thickness (which for computation is set equal to 0.05 m for very thin ice)
water temperature

geostrophic wind

= specific humidity of the air

= specific humidity at the ice surface
= incoming shortwave radiation

F. = incoming longwave radiation.

mon

me SN xNN
]

The constants D, and D; are bulk sensible and latent heat transfer coefficients and D, is the
Stefan-Boltzmann constant times the surface emissivity, Numerical values identical to those
used by Parkinson and Washington (1979) are used for these constants. (Specifically, D, =
228 m? K", Dy = 5.50x10°Wm2K™", D, = 5.69x10* J m™ over water and 6.45 x10° ]
m™ over ice.) The specific humidities at the ice (and water) surfaces are calculated in the
same manner as described by Parkinson and Washington (1979). Specific humidities and air
temperatures at a nominal 10-m reference level above the ice-water surface were obtained
from climatological data compiled by Crutcher and Meserve (1970). For the ice albedo 0.616
was used when the surface temperature was equal to 273,16 K. This value is slightly smaller
than Semtner’s adjusted value of 0.66 but larger than Parkinson and Washington’s adjusted
value of 0.53 for snow-free ice. For ice with a surface temperature below freezing, @ = 0.75
was used, which is identical to Parkinson and Washington’s ‘‘snow’’ albedo. For the con-
ductivity Semtner’s adjusted value of 2.1656 W m~ K-' was used.
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Figure Al. Ice strength versus thickness for the
redistributor proposed here. Strengths for different
values of the parameter H* (in metres) are shown.

highly dependent on 2H*. Consequently, uncertainties in H* are not critical to the simula-
tions. It is notable that strengths are substantially higher than those obtained by Thorndike
et al. In particular, for 25-cm-thick ice, the Thorndike et al. (1975) redistributor would yield
a strength of about 5 x10* N m~' whereas this redistributor yields =2.5x10° N m™!.

It should be noted that there are some similarities between this redistributor and that pro-
posed by Bugden (1979) and that used in early developments of the ice thickness distribution
theory (e.g. Thorndike and Maykut 1973). Bugden’s contribution was to show that such a
constant redistributor could at least partially be deduced from ridge statistical relations ob-
tained by Hibler et al. (1972) and Mock et al. (1972). The original feature of the redistribu-
tion proposed here is that the square root scaling of the maximum thickness cutoff be based
on geometric arguments.
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where c, is a constant, say 0.15. The basic idea here is that under ridging conditions the clos-
ure of both thin ice and thick ice occurs; however, the thinnest ice is allowed to be removed
to a greater extent. By fixing ¢, to be 0.15, only the thinnest 15% of the ice is deformed. Note
that if there is, say, 25% open water, only open water will be removed and there will be no
ridging. In the author’s judgment this choice of P(h) is quite reasonable and is adopted here
with ¢, = 0.15.

The other unknown is y(h,, h.), which specifies how ice is transferred from one category to
another by ridging. Thorndike et al. (1975) have suggested that

¥(hi, ha) = 8(ha —kh\)(1/k) (A9)

where k is a constant. Equation A8 effectively states that ice is transferred into a fixed multi-
ple of its own thickness. This form is computationally simple and is useful for examining the
behavior of the ice thickness distribution model. However, the redistribution of eq A8 ig-
nores two important physical features of the ridging. One feature is that under deformation,
ridging transfers ice to a variety of thickness categories. This is, for example, evident from
field observations of ridges (see, e.g., Weeks et al. 1971, and Kovacs 1972), which show them
to be roughly triangular in shape. These observations indicate that under deformation, leads
containing thin ice of a given thickness typically form ridges having a triangular cross sec-
tion. To satisfy eq A9 such ridges would have to have vertical sides.

The second physical feature is that typical ridge heights divided by the thickness of ice be-
ing ridged appear to decrease with increasing thickness (see, e.g., Tucker and Govoni 1981).
This particular scaling is an important feature of the Parmerter and Coon (1972) mechanistic
ridge model. In particular, Parmerter and Coon (1972) found that ridges simulated by using
their mechanistic model tended to have a maximum limiting height. This limiting height,
however, tended to scale approximately as the square root of the thickness of ice being ridged.
Such a square root dependence is also consistent with one’s intuition concerning ridging.
Consider, for example, two equal width leads undergoing ridging. With the assumption that
all the thin ice is deformed into piles of relatively small blocks with similar slope angles, the
two ridges formed would have heights scaling with the square root of the thickness of the ice
being ridged. If the distribution of lead widths is independent of the ice thickness in leads,
such an intuitive argument should have application.

A number of redistributors could be constructed that approximately satisfy these con-
straints. However, the simplest case is to take +y to be a constant up to some cutoff thickness:

v(hs, hy) = Ci for 2h, < hy < bih)h, (A10)
where
bh,) = 2AHYh)?

with H* a constant. Examination of Parmerter and Coon’s (1972) mechanistic studies sug-
gests that F* = 100 m is a reasonable value. For 1-m-thick ice this yields a maximum ridged
ice thickness of 20 m. What type of strengths this yields is illustrated in Figure Al, which
shows typical ice strengths (obtained numerically) versus thickness for this redistributor. For
comparison, strengths for several different values of H* are shown. (Since ice thicker than
18.3 m is not allowed numerically, the thick ice strengths in Figure Al will be somewhat
smaller than analytical values obtained in the Analytic Examination of the Ridge Redistribu-
tion Process section.) An item of particular interest for this paper is that the strengths are not
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T[P(h)g(h) - j: v(h',h) P(h") g(h")dh ']dh- (A3)
0 0

The first term in eq A4 specifies the amount of open water created, while the second term de-
scribes the transfer of thin ice to thicker categories by ridging. In this formalism + (h,, h.)dh.,
can be thought of as the area of ice put into the thickness interval (A., h, + dh;] when a unit
area of ice of thickness A, is used up. Basically, the integral over v specifies where the ice is
transferred to during ridging. The function P(#), on the other hand, is some probability
function specifying which categories are being destroyed by ridging. Written in this form +y
automatically satisfies eq Al. Satisfaction of eq A2 and A3 leads to the additional con-
straints, respectively,

f v, hyhan = n- (A6)

0

c [ whdn=p~. (A7)
0

Equation A6 requires that transfer of ice from the category does not change its mass, and eq
A7 serves as a definition of the ice strength P*,

To get some feeling for the amount of open water created with this formulation, it is use-
ful to explicitly calculate the coefficients in eq A4. The dynamical code used here employs an
elliptical yield curve (see Hibler 1979). Using this particular rheology (and noting that the
symbol P in eq 4 of Hibler [1979] is equivalent to the symbol P* used here) one can easily
show that:

(04€,)/P* = 0.5(A—éx)
where
A= [(Efl +é§z)(l +1/€%) + 4e? ¢, +2¢,, €2(1 — l/ez)]%'

Note that A is dependent only on the two invariants of the strain rate tensor: ¢, = (€1 + €21)
and €; = [(é:2 — €11)* + 4¢é11). In this expression, e is the ratio of the principal axes of the ellip-
tical yield curve (set equal to 2) and is a measure of the relative shear strength to compressive
strength. Larger e values yield less shear strength. With this rheology no open water will be
formed under pure convergence (¢, = éx; €. = 0; ¢,, < 0). Conversely, under pure diverg-
ence (¢, = éxn; €2 = 0; ¢,y > 0) there will be no ridging. Also, as e — o the amount of open
water forming under pure shear (¢,, = €2 = 0; &2 # 0) will approach zero. In the Thorndike
et al. (1975) study the special case of ¢ = 1 was used.

The two main unknowns in the redistribution theory are P(h) and y(h,, h;). Thorndike et
al. (1975) have suggested that I(:) be given by

h
P(h) = Max [(1 - f g(h)dh/c),o] (A8)
0
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APPENDIX A: MECHANICAL REDISTRIBUTOR

Consider a two-dimensional continuum with ice that is described by a plastic rheology
such that the stress state o0(é,, P*) is a function of the strain rate ¢, and a strength P*, Then,
following Thorndike et al. (1975) and Rothrock (1975), the mechanical redistribution func-
tion ¥ (see eq 4) must satisfy the following constraints:

Jvan=v.y (A1)

0

_f hydh =0 (A2)

0

c j' By ()dh = Ty 0y ¢, (A3)
0

where ¥ is the ice velocity field and C is a constant. In consideration of only the work done
on the ice by gravitational buoyancy forces, C would be given by

¢ = % ofite-~o)/o-1)

with g, the density of ice, o. the density of water, and'?the acceleration of gravity. Equation
Al follows from the constraint that ¥ renormalize the g distribution to unity because of
changes in area. Equation A2 follows from conservation of mass and basically states that ¥
does not create or destroy ice but merely changes its distribution. (An additional assumption
in eq A2 is that the ice mass is related in a fixed manner to the thickness.) The third con-
straint (Rothrock 1975) specifies that work done in building ridges is equal to the deforma-
tional work. An important feature of this constraint is that, for an arbitrary plastic yield
curve, it forces some ridging to take place even though there may be no net convergence. In
its present form (with C = C,) eq A3 ignores frictional losses occurring in ridging and con-
siders only the potential energy change from deformed ice being lifted against gravity and be-
ing forced down against buoyancy. However, Rothrock (1975) has estimated these frictional
losses to be the same order of magnitude as the potential energy changes. Consequently, as a
crude approximation for frictional losses, eq A3 is retained here with a constant C equal to
2C,.

As in Thorndike et al. (1975), a redistribution that satisfies these constraints is (using the
convention that repeated subscripts are summed over)

v = 8(A) [(1/P%uyéy + én] + (1/P%oé, W.(h,8) (Ad)

where

Wang) = [-Pon gt + f vonrm PO gthnan|/
0
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The interannual evolution of the summer ice edge is, on the other hand, dominated by
thermodynamic growth and decay rates rather than ridge buildup. Specifically, lower annual
thermodynamic net growth coupled with offshore ice advection gradually thins the ice off
the North Slope and Siberian coasts. This thin ice presence, coupled with high summer melt-
ing rates, creates an excessive ice edge in summer. Sensitivity analyses show that the magni-
tude of this summer ice edge is critically dependent on the albedo used for melting sea ice. By
modifying this albedo by only about 10%, much more realistic ice edge values may be ob-
tained. Similarly, small changes in the open water albedo should lead to substantially im-
proved summer ice margins. These ice edge results emphasize the need for a more detailed
analysis of the thermodynamic sensitivity of such variable thickness sea ice models. One ap-
proach is to do some process sensitivity studies using observed ice motion estimates as driv-
ing fields. Another approach would be to compare observed and simulated ice edge results
over several sequential years.

The heat exchange characteristics simulated here are substantially affected by sea ice ridg-
ing and deformation. On a basin-averaged scale, ridging transfers thin ice to thicker cate-
gories, thus making room for more thin ice to form. The thicker ice thus formed grows slow-
ly in winter, but ablates rapidly in summer. Spatial imbalances between ridging and open
water creation cause substantial spatial variations in the air-sea heat exchange. Regions with
more ridging tend to have a net heat gain from the atmosphere. Regions of large open water
creation, on the other hand, have more growth and thus have a net loss of heat to the atmos-
phere. These variations are in contrast to thermodynamic simulations, where in equilibrium
the net annual ice growth is zero everywhere.

In coupled dynamic-thermodynamic sea ice models, the way in which thin ice is statistical-
ly redistributed into thicker ice can significantly affect the geophysical stresses in pack ice.
The agreement with ridge morphological data and the realistic simulated ice thickness and
ridge buildup support the redistribution function proposed here. However, a major un-
known factor is the amount of frictional energy lost during ridging. The strengths simulated
here were realistic, although a bit small. But, sensitivity analysis suggests that only a modest
increase in frictional losses during ridging would be adequate for more realistic ice velocities
and strengths. Since frictional losses in ridging are not precisely known, such increases are
physically justifiable. Sensitivity studies with more detailed ice velocity verification fields
should help determine necessary strength increases more precisely. Polar drifting buoy data
taken should prove helpful in such studies.
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Figure 25. Annual net growth contours (at 0.6-m intervals)
Sfor the standard simulation.

thin ice to occur by divergence along one coast while converging ice into thicker categories at
another coast. The thicker ice ablates faster in summer than it freezes in winter, while the re-
verse is true of thin ice. As a consequence, over an annual cycle (neglecting oceanic effects)
areas with high ridging will have a net heat gain from the atmosphere and divergent thin ice
regions will have a net loss.

CONCLUDING REMARKS

This report describes a variable thickness dynamic-thermodynamic sea ice model and ex-
amines the seasonal equilibrium characteristics of this model. To develop this model, the
Thorndike et al. (1975) ice thickness distribution framework was extended to include an oce-
anic mixed layer at a fixed depth and lateral melting effects. In addition, a mechanical redis-
tribution process that is consistent with hypothesized and observed physics of the ridging
process has been proposed. By combining this framework with a viscous-plastic ice dynamics
model that was developed previously (Hibler 1979) and a spatially varying surface heat
budget, seasonal equilibrium simulations may be performed.

A dominant feature of the Arctic simulations discussed here is the time needed for the
thickness characteristics to fully evolve. The main characteristic is a buildup of ice along the
Canadian Archipelago in conjunction with a thinning of ice off the Alaskan and Siberian
coasts. These geographical chs~: -, however, take several years to fully develop. Off the
Archipelago, the buildup is based upon an accumu!ation of ridged ice formed over several
years. During each year the ice strength builds up as thin ice is removed by ridging and
growth. This creates a balance between the internal and external stresses. Since the thick ice
does not directly affect the ice stresses, its equilibrium balance requires a longer time scale.
Once equilibrium is reached, summer ablation of the thick ice largely offsets the new thick
ice formed by ridging.
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Figure 24. Basin-averaged net ice growth (a) and net ice trans-
Jer by ridging (b) for three categories of ice in the standard
simulation.

also be that not enough open water is being created owing to inadequate temporal and spatial
resolution of the wind fields. For example, while the basin-averaged thin ice growth (1 m) ap-
proximately equals thicker ice growth in January, the ice growth in the central basin in con-
siderably less. From day 1 to day 60, thin ice growth at grid cells 7 and 8 accounted for only

about 20% of the ice growth. These values are substantially less than estimates by Maykut ::;-:_}'.'
(1978), which yield approximately equivalent growth by thin and thick ice in the central basin N
in winter. R

In addition to increasing the total air-sea heat exchange by ridging and open water crea- g
tion, the dynamics also causes a spatial imbalance in the heat exchange. Because of this im- "'.“'
balance, the net growth over an annual cycle will not be zero everywhere, as in a thermo- :"{:'-::
dynamics-only simulation, but will vary spatially. These variations can be very significant as C-'.'::-f
demonstrated in Figure 25. This imbalance can occur by freezing ice at one location and then :5::{::
transferring it to another where it is melted. However, in practice the process is more com- ._-'~7:‘>'

plex and it relies upon ridging to a large extent. The ice dynamics, for example, can cause
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Figure 23. Basin-averaged ice thickness time series for the standard and ther- <
modynamics-only simulations. -
is from thin ice created by deformation. The increased decay rates, on the other hand, arise >

because of higher heat absorption by open water and by loss of ice from the basin by out-
flow. Some of these characteristics are illustrated in Figure 24, where the basin-averaged net
growth and net ice transfer by ridging are plotted for three broad ice categories. On a basin- :
averaged basis, open water creation is balanced by ridging, which transfers thin ice to the .
thick ice categories. Consequently, the large amount of fall and winter ridging shown in Fig-
ure 24 indicates that a large amount of open water is also being created then. With regard to E
decay, on day 180 the standard case has 25% open water, as contrasted to no open water for ~
the thermodynamic case. Also, the net annual export of ice from the basin amounts to about
0.09 Sv, a value close to that estimated by Aagaard and Greisman (1975). For comparison,
the net outflow in the high-strength case amounts to only about 0.045 Sv. Note, however, 2
that the outflow rates do fluctuate substantially (Fig. 21), a feature that is commensurate (-
with observations by Vijne (1976). o

In general, Figure 24 illustrates the important role ridging plays in the mass balance. On
the average, ridging transfers thin and intermediate ice to thicker categories, thus making -
room for thinner ice and, hence, greater growth. This transfer, in turn, offsets the ablation .
of the thicker ice. Note that there is an annual net ablation of thick and intermediate ice. By
analyzing the transfer by growth as well as by ridging, it can be shown that the net intermedi-
ate ice melt is partially offset by increased vertical growth as well as by outflow and ridging.
However, the thick ice net melt is almost all balanced by ridging and outflow.

While there are certain quantitative differences, these mass balance results are qualitative-
ly similar to observational estimates by Koerner (1973). Based mostly on ground observa-
tions in the central basin, Koerner (1973) deduced a total annual ice growth of about 1.1 m,
peaking in a thickness of about 3.7 m. He estimated this growth to be balanced by about 0.7 -
m of outflow and 0.4 m of ablation. Koerner also determined that about 40% of the ice grew -~
over ice less than 1 m thick, and that 0.20 m of the new ice ended up in ridges. The simula- -
tions performed here yield a similar dominance of growth by thin ice (and concomitant in-
corporation of new ice in ridges) but yield a smaller maximum ice thickness. Also, there is
substantially more ablation and melting. Part of this difference is likely from a more com- r
plete inclusion of peripheral areas of the basin in the simulated estimates. However, it may
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time-dependent Maykut-Untersteiner (1971) model and includes a seasonal snow cover. In
addition, larger values for the sensible and latent heat bulk aerodynamic coefficients are
used. (The smaller values used by Parkinson and Washington [1979], and hence here, can be
justified because geostrophic rather than surface wind speeds are being input.)

In the February case the dominant characteristic in the heat balance is a rapid decrease in
the sensible and latent heat components as the ice thickens, The ice sensible heat losses simu-

lated here are somewhat larger than Maykut’s values, primarily due to a larger amount of in- '.j-:

coming longwave radiation. (The difference in incoming longwave radiation may be deduced i

by examining the open water case.) The larger radiation used here tends to give a higher sur- -:j:

face ice temperature and, hence, a greater sensible heat loss. This is especially pronounced in ..__

the case of thick ice, where Maykut’s smaller longwave radiation allows the surface <!

temperature of the snow-covered ice to drop below the air temperature, and, hence, change “

» the sign of the sensible heat transfer.
- In the growth-melt transition case, the main difference is in the net shortwave radiation :::j

a terms. The smaller thin ice albedos used by Maykut give a greater absorption of shortwave -
t radiation. This in turn results in a greater surface temperature and larger sensible heat flux "‘
. than in the simulation performed here. This condition is, however, reversed in the very thick . .
= ice, where a Maykut snow albedo greater than 0.75 allows less shortwave radiation to be ab- o
f sorbed. Note also that in this transition period the sensible heat loss is less dependent upon

thickness. This arises from the smallness of the conductivity term (which characterizes the ice

thickness), ascribable to a small temperature differential. .,.

It is notable that despite differences in parameterization and forcings, the simulated ice L__‘
growth rates are relatively similar in both the February and June cases. This demonstrates -
the negative feedback character of the heat budget in the presence of an ice cover. Basically, NS

the system attempts to minimize the effect of changes of one component by the adjustment
of other components. Larger incoming longwave radiation will, for example, be offset par-

tially by a greater surface temperature (which in turn causes more outgoing radiation) and |
p- - ially by an increased sensible heat loss. In the open water case these feedbacks cannot "
operate since the surface temperature is fixed. o,
Finally, in the 26 June case the surface temperature in all the ice cases is fixed at freezing. :'-_'.'
As a consequence the ice melting rate is independent of thickness, since all snow-free ice al- e
bedos are assumed equal. There is a difference in conduction, with the thinner ice having ',_
slightly greater conduction of heat into the mixed layer and, hence, more bottom melting. s._‘
Note, however, that in all cases most of the melting is surface ablation. The greater heat ab- :::-,
sorption of the open water arises from its lower albedo. <o
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APPENDIX C: THICKNESS FINITE DIFFERENCE CODE

Thickness partition

For the thickness differencing, an arbitrary number of irregularly spaced thickness levels
are employed with a center thickness & and thickness limits »/to h.,. Open water is con-
sidered simply by having one thickness category centered at zero thickness. In order to avoid
discontinuities, «1e thickness mesh is forced to vary smoothly. A flexible procedure used in
certain numerical ocean models (vis Bryan 1969) is to allow the spacing between categories to
vary according to a Gaussian distribution.* Using this procedure, one obtains a partition of
center thicknesses by

b A b aa- i an.

0 form =1
h, = (&)
Bpr+Ci+Cifl —exp[—(m~-1)/c}} form # 1

where ¢,, ¢; and ¢, are constants. Thickness limits are then determined by

(h.—cl)/Z form =1
h, = (C2)
2hp-s—h,y form > 1.

Clearly, by varying c;, ¢: and c, a wide variety of different thickness partitions may be ob-
tained. The particular arrangement used in these simulations (see Fig. 1) was by using ¢, =
0.2m,c; = 7.0 m, and ¢, = 110.

By use of this thickness partition, the areal thickness distribution is defined at the interior
of the thickness interval A,'to A4, and is denoted by g:. For computation, an auxiliary dimen-
sionless distribution function g; is defined by

E=M|gl

. where Ak, = k., — k. For future differencing, g is considered to have a mean thickness of
h.. The definition of g; is that it is the fraction of area covered by ice with thickness between
h’and h..,. The growth rates for each category are also defined at the interior of the thickness
category and are denoted by £, = f(h).

Thickness finite differencing

To carry out the operations in the time marching equations (eq 10-15) it is necessary to
have thickness finite differences for the term (f2)s, where the subscript A denotes a thickness
finite difference. In addition, a finite difference procedure is needed for the redistribution
and the lateral melting. The finite differences for the lateral melting steps are relatively trivi-
al. In particular, integrals over g are simply replaced by sums over g.. However, the other
l terms are more complex. Consequently, the differencing schemes for the (fg), term and the
: redistribution are described here. The other spatial finite differences are identical to those
used by Hibler (1979) and are described there.

* Personal communication with M. Cox, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, Novem-
ber 1979.
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There are two constraints that must be preserved by the finite difference (f2).. One is that
the sum of the changes in g are zero. This follows from the fact that vertical growth does not
change the total area of ice and open water. The second is that the new total thickness must
differ from the old thickness by an amount equal to the ice grown (or melted). These con-
straints can be expressed in finite difference form by (where M thickness levels are assumed)

[(ff)h]i =0 (C3)

iI=
g Kfah]i b=~ . (C4)

i= i
A finite differencing satisfying these constraints may be obtained by using a form of up-
stream differencing (see, e.g., Mesinger and Arakawa 1976). In particular a flux (F) at the
thickness boundary h/'for i = 2 to M is defined by

F"‘ = [Max(ov fl-l) E‘-l + Mln(oi fl) E‘l / (hi—hi-n).
To ensure conditions C3 and C4, it is further insisted that

Fn = Fuu = 0.
Using these fluxes, the finite differences for the (fg), term are

F¢ -F
[(8)s): = lT:ﬁ-——h:’ .

Multiplying both sides by Ah = A, — h/gives
[(fE).]. = F.—F. (CS)
The condition of eq C3 is satisfied since the F.’s cancel in pairs in the sum. To see that eq C4

is satisfied, consider an arbitrary growth rate, say f; #0. Then the left-hand side of eq C4 be-
comes

—Fihy+ hyoFey = j‘;%h%_ij) = —f,8.
= Ry

The exception to this occurs when open water is melting or the thickest category is freezing.
In these cases the conditions F, = F,,, = O prevent terms necessary for satisfying eq C4
from being included. However, in the case of open water melting this heat will be correctly
accounted for by additional bottom or lateral melting as described earlier (see eq 5). To cor-
rect the thick ice freezing case, any growth over thick ice is reapportioned over the other
growth rates in a manner similar to eq 5. In practice this amount can be made very small by
taking the thick ice category to be very thick.

With this particular finite difference code (and dynamical code described previously) the
essential stability requirement is a Courant-Friedrichs-Lewy condition for the advection
terms, namely
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for the spatial advection and
At = |(h~hi1)| min ([Max(0,/.-)]", — [Min(0, £ }iez se-t

for the thickness advection. Of these two terms the thickness advection term will normally be
most critical.

Mechanical redistribution

Three mechanical redistribution operations are required at each time step in the numerical
scheme. The operations consist of creating open water, carrying out an ice thickness redistri-
bution and estimating the ice strength at the end of the time step. For the open water crea-
tion, all that are needed are finite differences for the strain rate tensor. These are calculated
in a way identical to that used in the dynamical code and are described in Hibler (1979). (This
reference also contains explicit expressions for the stress state o, in terms of the strain rates
and ice strength.) For the other two operations it is necessary to introduce finite differences
for redistribution. For this purpose it is useful to define a discrete ridging operation.

Using the thickness partition notation introduced in Appendix A, one defines a discrete re-
distributor v by

A,
Hhoh) = J‘ vthoh')dh'  forj <M
b/

Ty = [ v h)an'.
hy

To ensure that ¥ is normalized it is insisted that M

M
2 '7("1: h)h, = hl'

i=]

In addition to ¥ it is useful to define an auxiliary function \; by

N = i ihb h).

j=1

Essentially, \, is the total reduction of area when a unit area of ice of thickness A, is ridged.
To demonstrate how a redistribution is carried out, consider that an area reduction of

M
L AA - E[ - 1
- =1

is required. To redistribute ice an initial set of category reductions (denoted by g7?) are esti-
mated by
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A
=7 ‘!‘ P(h) dh.

In this integral g,—in the definition of P(h)—is considered to be constant over the interval
h'+ h... Defining AA’ by

(l"l L
v
.

b
»
1
.Mt
b
%

S e
L}
.
steta

a corrected set of category reductions are calculated by
Er*+(AA/AAY) g* .

The new g/’s are then given by
M
B=E-pr ) W
j=

To estimate strengths, the simplest approach is to artificially enlarge all g values by, say,
0.1%. The potential energy is then calculated, a redistribution carried out, and a new poten-
tial energy calculated. The difference in potential energies divided by the strain then yields
the ice strength.

Formally, this procedure consists of first defining

& = 1.001 g.

As in Rothrock (1975), the initial potential energy is given by

After redistribution g becomes g with potential energy
M
S.=C ) @h.
iml

Insisting that the compressive strength times the divergence rate equals the rate of potential
energy change, one obtains the following equation for P*:

P‘ (O.Nl) = (S, - s.i
At At

In these expressions C is set equal to 2C, to allow for frictional losses.
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